Image Descriptors Based on Curvature Histograms
نویسندگان
چکیده
Descriptors based on orientation histograms are widely used in computer vision. The spatial pooling involved in these representations provides important invariance properties, yet it is also responsible for the loss of important details. In this paper, we suggest a way to preserve the details described by the local curvature. We propose a descriptor that comprises the direction and magnitude of curvature and naturally expands classical orientation histograms like SIFT and HOG. We demonstrate the general benefit of the expansion exemplarily for image classification, object detection, and descriptor matching.
منابع مشابه
Beyond histograms: why learned structure-preserving descriptors outperform HOG
Statistical image descriptors based on histograms (e.g. SIFT [1], HOG [2]) are widely used in image processing, because they are fast and simple methods with high classification performance. However, they discard the local spatial topology and thus lose discriminative information contained in the image. We discuss the relations between HOG and VNMF descriptors, i.e. structure free histograms ve...
متن کاملMultiple Local Curvature Gabor Binary Patterns for Facial Action Recognition
Curvature Gabor features have recently been shown to be powerful facial texture descriptors with applications on face recognition. In this paper we introduce their use in facial action unit (AU) detection within a novel framework that combines multiple Local Curvature Gabor Binary Patterns (LCGBP) on different filter sizes and curvature degrees. The proposed system uses the distances of LCGBP h...
متن کاملPerformance evaluation of block-based copy- move image forgery detection algorithms
Copy-move forgery is a particular type of distortion where a part or portions of one image is/are copied to other parts of the same image. This type of manipulation is done to hide a particular part of the image or to copy one or more objects into the same image. There are several methods for detecting copy-move forgery, including block-based and key point-based methods. In this paper, a method...
متن کاملStochastic Image Reconstruction from Local Histograms of Gradient Orientation
Many image processing algorithms rely on local descriptors extracted around selected points of interest. Motivated by privacy issues, several authors have recently studied the possibility of image reconstruction from these descriptors, and proposed reconstruction methods performing local inference using a database of images. In this paper we tackle the problem of image reconstruction from local...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کامل